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Langevin Dynamics

Goal:

Sample from a target distribution

π(x) =
e−U(x)∫
e−U(y)dy

The Langevin stochastic differential equation (SDE)

dYt = −∇U(Yt)dt +
√

2dBt

has π as unique invariant distribution.The Euler discretization of this SDE is

Xt+1 = Xt − ηt+1∇U(Xt) +
√

2ηt+1 · Zt+1

where (Zt) is a sequence of standard Gaussian distributions. It is usually referred to as
Unadjusted Langevin Algorithm (ULA).
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Bias in Langevin Dynamics

When we discretize the SDE and introduce the stepsize ηk , we inevitably get biased
estimates for π.

If ηk is small, we introduce small bias but it takes a large number of iterations to
explore the support of the target distribution.

If ηk is large, we quickly explore the support of the target distribution but introduce
more bias.
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Upper bounds for Langevin in Wasserstein distance

Definition:

Let Qt
η be the kernel associated with the first t jumps {X1, ...,Xt}.

Durmus and MoulinesDurmus, Moulines (2018) High-dimensional Bayesian inference via
the Unadjusted Langevin Algorithm proved a bound in Wasserstein distance between the
distribution π and one iterate of ULA:

W 2
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Bound for Normals in dimension 2

Comment:

The Wasserstein distance satisfies W2

(
1
t

∑t
k=1 δxQ

k
η , π
)
≤ 1

t

∑t
k=1 W2

(
δxQ

k
η , π
)

Question:

Is it better to have a constant or decaying stepsize?

Consider (
x1
x2

)
∼ N

((
0
0

)
,

(
a 0
0 1

))
⇒ U(x) =

x2
1

2a
+

x2
2

2

with smoothness L = 1 and strong convexity m = 1/a.

STEPSIZE: ηt =
η

tα
with α ∈ [0, 1]
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Choice of α and η

For each value of α we search the value of η that minimizes the bound for the
Wasserstein distance

It turns out that, with the correct choice of η, a constant stepsize (α = 0) is optimal
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How to pick optimal η

Problem:

A priori we don’t know how to pick η.

Idea:

Use coupling to decide when it is time to decrease the stepsize. If we start from points
that are far enough (in the sense that the distributions induced by one step of ULA are
sufficiently far in Total Variation distance), the coupling time approximates the time
when we reached stationarity.

Tools for coupling:

One step coupled ULA threads. Use the same noise for both{
Xt+1 = Xt − ηt+1∇U(Xt) +

√
2ηt+1 · Zt+1

X ′t+1 = X ′t − ηt+1∇U(X ′t ) +
√

2ηt+1 · Zt+1

One step maximal coupling, to maximize the probability that the two chains meet.
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Start from the pair of points X (1) and X (2)

Run coupled Langevin steps with stepsize η until the two threads are sufficiently
close, then attempt a maximal coupling step. If it fails, continue with the
coupled Langevin steps

Wait for them to couple
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Sample a new starting point for the second thread

Reduce the stepsize by a factor γ and wait again for the two threads to couple

Continue until we used more than a certain portion of the pre-allocated
computational budget

Use the remaining budget to run ULA with the last stepsize



Algorithm

Sordello Stepsize selection via coupling 9 / 14

Sample a new starting point for the second thread

Reduce the stepsize by a factor γ and wait again for the two threads to couple

Continue until we used more than a certain portion of the pre-allocated
computational budget

Use the remaining budget to run ULA with the last stepsize

Trick: use more that one coupled thread



If coupling does not happen

Keep track of
Dt := ‖X (1)

t − X
(2)
t ‖

and count the number of times that

Dt+1 > Dt

If η is too SMALL: this distance is decreasing but does not get to 0. Here we can
estimate m and L to jump directly to the optimal η

If η is too LARGE: this distance oscillates a lot
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Results on Bayesian Logistic Regression

Goal:

Sample from the posterior distribution for β

β = (1, 1) and n = 200

Xi are i.i.d. standard normals with correlation ρ

Yi ∼ Bernoulli(pi ) where pi = σ(βXi )

The prior we have on β is

p(β) ∼ N

((
1
1

)
,

(
1 0
0 1

))

Gradient of the log of the posterior:

∇ log(p(β|Y ,X )) ∝ ∇ log(p(β)) +
n∑

i=1

(YiXi − σ(βXi )Xi )
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Results

Compare ULA with constant stepsize, our method and Metropolis adjusted Langevin
on a range of initial values for the stepsize

Use 10% of the budget to explore and decide the optimal stepsize
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Directions

Set the hyperparameters of the algorithm in a principled way

Prove theoretical guarantees on the distance from the target distribution π

Test the performance of the algorithm in other settings
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Thank you!
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