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Stochastic Optimization

Problem: find the minimizer 8* of a function F(#) when VF(6) is unknown
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Introduction

Stochastic Optimization

Problem: find the minimizer 8* of a function F(#) when VF(6) is unknown

@ Online Learning: F(0) =E[f(0, 2)]

@ Empirical Risk Minimization: finite population of size n, which is
extremely large, and F(0) = 1 "7 . (0, z)

~n
Noisy gradient g(6,Z) = Vyf (0, Z), satisfying E [g(6, Z)] = VF(0)

SGD (Robbins and Monro (1951)):
From a starting point g, SGD recursively updates

9t+1 =0 — Nt - g(9t, Zt+1)

7Nt is the learning rate.
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Introduction

How to Select the Learning Rate

g(0,Z) = VF(0) + noise

signal stronger
than noise

noise stronger
than signal
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Popular Choices for the Learning Rate
@ N =1

e convergence is not guaranteed! [Moulines and Bach (2011)]
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e convergence is not guaranteed! [Moulines and Bach (2011)]
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e heavily dependent on the initial learning rate
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procedure is called SGD'/2. [Bottou et al. (2018)]
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Introduction

Popular Choices for the Learning Rate

@ Nt =1

e convergence is not guaranteed! [Moulines and Bach (2011)]
@ 1 o t~* with @ € (0.5,1) [Robbins and Monro (1951)]

e heavily dependent on the initial learning rate

e 1 = 7 for the first t; iterations, then it gets halved and so on. This
procedure is called SGD'/2. [Bottou et al. (2018)]

e also not robust

o Adaptive methods:

o pflug Diagnostic [Chee, Toulis (2018)]
o AdaGrad [Duchi, Hazan, Singer (2011)]
o Adam [Kingma, Ba (2015)]
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Behavior of Classic Methods
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Introduction

Robustness of Qur Method
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N
Outline

@ Introduce the Splitting Diagnostic
@ Theoretical guarantees for Splitting Diagnostic

@ Introduce procedure SplitSGD
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Splitting Diagnostic

Goal:
Detect the phase transition, so we can keep 1 constant until stationarity.J

@ Run two SGD threads (related to HiGrad [Su and Zhu (2018)])

@ If the noisy gradients point on average in the same direction, we are
still approaching the minimizer

@ If not, we reached stationarity

Sordello Learning Rate Selection for SGD 8 /24



Splitting Diagnostic

Definition:

(k)

@ g; ' := is the average noisy gradient in window / and thread k

e Qi(fo,m, 1) = (gi(l),gi(2)> is the gradient coherence, which is

positive if gr,(l) and g,.(z) have approximately the same direction
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Output

A binary value that tells if stationarity is detected,

NON STATIONARY otherwise

{ STATIONARY if there are enough negative Q;
D =

and the average of the last iterates in the two threads

1 2
On = ngr)w-Z + ei(er)w-E
D.-—————+5
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Theoretical Guarantees for 7 small

We want the diagnostic to say that stationarity has not been reached yet.
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Theoretical Guarantees

Theoretical Guarantees for n small

We want the diagnostic to say that stationarity has not been reached yet.

Theorem:

If F(0) is L-smooth, and E [||g(6, Z)|[?] < G2, then for any fixed t € N
and i € {1, ..., w} we can set n small enough such that

Tp = NON STATIONARY

with high probability.
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Theoretical Guarantees

Theoretical Guarantees for n small
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Theoretical Guarantees for t large

If t — oo, we want stationarity to be detected.

o & = E DA
Sordello Learning Rate Selection for SGD



Theoretical Guarantees

Theoretical Guarantees for t large

If t — oo, we want stationarity to be detected.

Theorem:

If F() is p-strongly convex and L-smooth, and E [||g(0, Z)||?] < G,
then for any n < /L%, ¢ € Nand i € {1,...,w}, as t — 0o we have that

Tp = STATIONARY

with high probability.
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Theoretical Guarantees

Theoretical Guarantees for t large
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Compare with pflug

Comparison with pflug Diagnostic

Linear Regression with n =0.0001

0* = (1,...,1)
90 = (61,...,6d)

log distance

where ¢; ~ N(0,0.1). We run
multiple SGD threads and "eye-
ball’ the elbow of the distance
with 6*.

25804
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Compare with pflug

Comparison with pflug Diagnostic

Linear Regression with n =0.0001

0* = (1,...,1)
90 = (61,...,6d)

log distance

where ¢; ~ N(0,0.1). We run
multiple SGD threads and "eye-
ball’ the elbow of the distance
with 6*.

75604

Iterations

@ Splitting Diagnostic declares stationarity after 47.000 iterations

@ The pflug Diagnostic consistently estimates more than a million
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Comparison with pflug Diagnostic

Number of iterations before stationarity, multiply by 1000.

Eyeballing pflug Splitting

N close | far close far close far

Li 0.001 4.0 5.0 47 | 717.6 6.1 10.3
inear

0.0001 | 30.0 | 50.0 | 65.3 | 1000.0] 14.6 | 47.1

Logisti 0.01 5.0 10.0 0.8 515 157 | 17.1
ogistic

0.001 30.0 | 100.0] 3.5 | 4522 | 20.1 | 57.2
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SplitSGD
N =n
51

Ne=mn-7

t3 = |t2/7]
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SplitSGD Procedure

SplitSGD
——--- o
& ne =" Nne=mn-7 o
Sy e R
12w

@ Run SGD with fixed learning rate 1 on a single thread. The
number of iterations t; if decided in advance.

@ From 6y, split the single thread into two and start the Splitting
Diagnostic.
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SplitSGD Procedure

SplitSGD
——--- o
& ne =" Nne=mn-7 o
= e R
12w

From the output of the diagnostic, 6p, restart a new single thread

o of length t; and with learning rate i if Tp = NON STATIONARY.
e of length [t1/7] and with learning rate n- v if Tp = STATIONARY.

v is the discount factor.
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Comparison with other SGDs (Logistic Regression)

Logistic Regression with n =0.01 Logistic Regression with n =0.003
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Comparison with other SGDs (SVM)
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Comparison with AdaGrad

We used a sparse feature matrix. In Adagrad 7; = —2L— € R¢
\/ GZ+e

Linear Regression with n =0.01 Logistic Regression with n =0.05
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Conclusion

We developed an efficient optimization method using a diagnostic that
detects when SGD with constant learning rate has reached stationarity.
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Conclusion

We developed an efficient optimization method using a diagnostic that
detects when SGD with constant learning rate has reached stationarity.

SplitSGD:

@ no more computational cost than the standard SGD
@ robust to the choice of the initial learning rate

@ robust to the choice of the starting point
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Conclusion

We developed an efficient optimization method using a diagnostic that
detects when SGD with constant learning rate has reached stationarity.

SplitSGD:

@ no more computational cost than the standard SGD
@ robust to the choice of the initial learning rate

@ robust to the choice of the starting point

Future Work:

@ Performance in nonconvex settings

@ Incorporate into other existing methods (momentum, ...)
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Thank you!
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