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Introduction

Stochastic Optimization

Problem: find the minimizer θ∗ of a function F (θ) when ∇F (θ) is unknown

Online Learning: F (θ) = E [f (θ,Z )]

Empirical Risk Minimization: finite population of size n, which is
extremely large, and F (θ) = 1

n

∑n
i=1 f (θ, zi )

Noisy gradient g(θ,Z ) = ∇θf (θ,Z ), satisfying E [g(θ,Z )] = ∇F (θ)

SGD (Robbins and Monro (1951)):

From a starting point θ0, SGD recursively updates

θt+1 = θt − ηt · g(θt ,Zt+1)

ηt is the learning rate.

Sordello Learning Rate Selection for SGD 2 / 24



Introduction

Stochastic Optimization

Problem: find the minimizer θ∗ of a function F (θ) when ∇F (θ) is unknown

Online Learning: F (θ) = E [f (θ,Z )]

Empirical Risk Minimization: finite population of size n, which is
extremely large, and F (θ) = 1

n

∑n
i=1 f (θ, zi )

Noisy gradient g(θ,Z ) = ∇θf (θ,Z ), satisfying E [g(θ,Z )] = ∇F (θ)

SGD (Robbins and Monro (1951)):

From a starting point θ0, SGD recursively updates

θt+1 = θt − ηt · g(θt ,Zt+1)

ηt is the learning rate.

Sordello Learning Rate Selection for SGD 2 / 24



Introduction

Stochastic Optimization

Problem: find the minimizer θ∗ of a function F (θ) when ∇F (θ) is unknown

Online Learning: F (θ) = E [f (θ,Z )]

Empirical Risk Minimization: finite population of size n, which is
extremely large, and F (θ) = 1

n

∑n
i=1 f (θ, zi )

Noisy gradient g(θ,Z ) = ∇θf (θ,Z ), satisfying E [g(θ,Z )] = ∇F (θ)

SGD (Robbins and Monro (1951)):

From a starting point θ0, SGD recursively updates

θt+1 = θt − ηt · g(θt ,Zt+1)

ηt is the learning rate.

Sordello Learning Rate Selection for SGD 2 / 24



Introduction

Stochastic Optimization

Problem: find the minimizer θ∗ of a function F (θ) when ∇F (θ) is unknown

Online Learning: F (θ) = E [f (θ,Z )]

Empirical Risk Minimization: finite population of size n, which is
extremely large, and F (θ) = 1

n

∑n
i=1 f (θ, zi )

Noisy gradient g(θ,Z ) = ∇θf (θ,Z ), satisfying E [g(θ,Z )] = ∇F (θ)

SGD (Robbins and Monro (1951)):

From a starting point θ0, SGD recursively updates

θt+1 = θt − ηt · g(θt ,Zt+1)

ηt is the learning rate.

Sordello Learning Rate Selection for SGD 2 / 24



Introduction

Stochastic Optimization

Problem: find the minimizer θ∗ of a function F (θ) when ∇F (θ) is unknown

Online Learning: F (θ) = E [f (θ,Z )]

Empirical Risk Minimization: finite population of size n, which is
extremely large, and F (θ) = 1

n

∑n
i=1 f (θ, zi )

Noisy gradient g(θ,Z ) = ∇θf (θ,Z ), satisfying E [g(θ,Z )] = ∇F (θ)

SGD (Robbins and Monro (1951)):

From a starting point θ0, SGD recursively updates

θt+1 = θt − ηt · g(θt ,Zt+1)

ηt is the learning rate.

Sordello Learning Rate Selection for SGD 2 / 24



Introduction

How to Select the Learning Rate
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Introduction

Popular Choices for the Learning Rate

ηt = η

• convergence is not guaranteed! [Moulines and Bach (2011)]

ηt ∝ t−α with α ∈ (0.5, 1) [Robbins and Monro (1951)]

• heavily dependent on the initial learning rate

ηt = η for the first t1 iterations, then it gets halved and so on. This
procedure is called SGD1/2. [Bottou et al. (2018)]

• also not robust

Adaptive methods:

pflug Diagnostic [Chee, Toulis (2018)]
AdaGrad [Duchi, Hazan, Singer (2011)]
Adam [Kingma, Ba (2015)]
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Introduction

Behavior of Classic Methods
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Introduction

Robustness of Our Method
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Outline

Introduce the Splitting Diagnostic

Theoretical guarantees for Splitting Diagnostic

Introduce procedure SplitSGD
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Splitting Diagnostic

Splitting Diagnostic
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Goal:

Detect the phase transition, so we can keep η constant until stationarity.

Run two SGD threads (related to HiGrad [Su and Zhu (2018)])

If the noisy gradients point on average in the same direction, we are
still approaching the minimizer

If not, we reached stationarity

1

`

. . .

. . .

w



Splitting Diagnostic

Splitting Diagnostic
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Definition:

ḡ
(k)
i := is the average noisy gradient in window i and thread k

Qi (θ0, η, l) = 〈ḡ (1)
i , ḡ

(2)
i 〉 is the gradient coherence, which is

positive if ḡ
(1)
i and ḡ

(2)
i have approximately the same direction

Q1 Q2

. . .

. . .

Qw



Splitting Diagnostic

Output
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A binary value that tells if stationarity is detected,

TD =

{
STATIONARY if there are enough negative Qi

NON STATIONARY otherwise

and the average of the last iterates in the two threads

θD :=
θ
(1)
t+w ·` + θ

(2)
t+w ·`

2

t

. . .

. . .

θD



Theoretical Guarantees

Theoretical Guarantees for η small

We want the diagnostic to say that stationarity has not been reached yet.

Theorem:

If F (θ) is L-smooth, and E
[
||g(θ,Z )||2

]
≤ G 2, then for any fixed t ∈ N

and i ∈ {1, ...,w} we can set η small enough such that

TD = NON STATIONARY

with high probability.
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Theoretical Guarantees

Theoretical Guarantees for η small

We prove it by showing that

sd(Qi ) ≤ C1(η, `) · E [Qi ]

where C1(η, `) can be made arbi-
trarily small. When η is small, the
gradient coherence is positive.
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Theoretical Guarantees

Theoretical Guarantees for t large

If t →∞, we want stationarity to be detected.

Theorem:

If F (θ) is µ-strongly convex and L-smooth, and E
[
||g(θ,Z )||2

]
≤ G 2,

then for any η ≤ µ/L2, ` ∈ N and i ∈ {1, ...,w}, as t →∞ we have that

TD = STATIONARY

with high probability.
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Theoretical Guarantees

Theoretical Guarantees for t large

We prove it by showing that

|E [Qi ]| ≤ C2(η) · sd(Qi )

where C2(η) = C2·η+o(η). When
t is large, the gradient coherence
is distributed around 0.

Sordello Learning Rate Selection for SGD 14 / 24



Compare with pflug

Comparison with pflug Diagnostic

θ∗ = (1, ..., 1)

θ0 = (ε1, ..., εd)

where εi ∼ N(0, 0.1). We run
multiple SGD threads and ”eye-
ball” the elbow of the distance
with θ∗. −4
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Linear Regression with η = 0.0001

Splitting Diagnostic declares stationarity after 47.000 iterations

The pflug Diagnostic consistently estimates more than a million
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Compare with pflug

Comparison with pflug Diagnostic

Number of iterations before stationarity, multiply by 1000.

Eyeballing pflug Splitting

η
start close far close far close far

Linear
0.001 4.0 5.0 4.7 717.6 6.1 10.3

0.0001 30.0 50.0 65.3 1000.0 14.6 47.1

Logistic
0.01 5.0 10.0 0.8 51.5 15.7 17.1

0.001 30.0 100.0 3.5 452.2 20.1 57.2
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SplitSGD Procedure

SplitSGD

Sordello Learning Rate Selection for SGD 17 / 24

t1

ηt = η

1 2 w
t2 = t1

ηt = η

t3 = bt2/γc
ηt = η · γ



SplitSGD Procedure

SplitSGD
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t1

ηt = η

1 2 w
t2 = t1

ηt = η

t3 = bt2/γc
ηt = η · γ

Run SGD with fixed learning rate η on a single thread. The
number of iterations t1 if decided in advance.

From θt1 split the single thread into two and start the Splitting
Diagnostic.



SplitSGD Procedure

SplitSGD
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t1

ηt = η

1 2 w
t2 = t1

ηt = η

t3 = bt2/γc
ηt = η · γ

From the output of the diagnostic, θD , restart a new single thread

of length t1 and with learning rate η if TD = NON STATIONARY.

of length bt1/γc and with learning rate η · γ if TD = STATIONARY.

γ is the discount factor.



SplitSGD Procedure

Comparison with other SGDs (Logistic Regression)
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SplitSGD Procedure

Comparison with other SGDs (SVM)
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SplitSGD Procedure

Comparison with AdaGrad

We used a sparse feature matrix. In Adagrad ηt = η√
G2
t +ε
∈ Rd
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Conclusion

We developed an efficient optimization method using a diagnostic that
detects when SGD with constant learning rate has reached stationarity.

SplitSGD:

no more computational cost than the standard SGD

robust to the choice of the initial learning rate

robust to the choice of the starting point

Future Work:

Performance in nonconvex settings

Incorporate into other existing methods (momentum, ...)
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Thank you!
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