Robust Learning Rate Selection for Stochastic Optimization Using Splitting Diagnostic

Matteo Sordello

JSM 2019

Joint work with Weijie Su

Problem: find the minimizer θ^* of a function $F(\theta)$ when $\nabla F(\theta)$ is unknown

(日) (周) (三) (三)

Problem: find the minimizer θ^* of a function $F(\theta)$ when $\nabla F(\theta)$ is unknown

• Online Learning: $F(\theta) = \mathbb{E}[f(\theta, Z)]$

イロト イポト イヨト イヨト

Problem: find the minimizer θ^* of a function $F(\theta)$ when $\nabla F(\theta)$ is unknown

- Online Learning: $F(\theta) = \mathbb{E}[f(\theta, Z)]$
- Empirical Risk Minimization: finite population of size *n*, which is extremely large, and $F(\theta) = \frac{1}{n} \sum_{i=1}^{n} f(\theta, z_i)$

Problem: find the minimizer θ^* of a function $F(\theta)$ when $\nabla F(\theta)$ is unknown

- Online Learning: $F(\theta) = \mathbb{E}[f(\theta, Z)]$
- Empirical Risk Minimization: finite population of size *n*, which is extremely large, and $F(\theta) = \frac{1}{n} \sum_{i=1}^{n} f(\theta, z_i)$

Noisy gradient $g(\theta, Z) = \nabla_{\theta} f(\theta, Z)$, satisfying $\mathbb{E}[g(\theta, Z)] = \nabla F(\theta)$

イロト 不得 トイヨト イヨト 二日

Problem: find the minimizer θ^* of a function $F(\theta)$ when $\nabla F(\theta)$ is unknown

- Online Learning: $F(\theta) = \mathbb{E}[f(\theta, Z)]$
- Empirical Risk Minimization: finite population of size *n*, which is extremely large, and $F(\theta) = \frac{1}{n} \sum_{i=1}^{n} f(\theta, z_i)$

Noisy gradient $g(\theta, Z) = \nabla_{\theta} f(\theta, Z)$, satisfying $\mathbb{E}[g(\theta, Z)] = \nabla F(\theta)$

SGD (Robbins and Monro (1951)):

From a starting point θ_0 , SGD recursively updates

$$\theta_{t+1} = \theta_t - \eta_t \cdot g(\theta_t, Z_{t+1})$$

 η_t is the **learning rate**.

How to Select the Learning Rate

) 4 (

æ

• $\eta_t = \eta$

• convergence is not guaranteed! [Moulines and Bach (2011)]

(日) (周) (三) (三)

• $\eta_t = \eta$

- convergence is not guaranteed! [Moulines and Bach (2011)]
- $\eta_t \propto t^{-\alpha}$ with $\alpha \in (0.5, 1)$ [Robbins and Monro (1951)]
 - heavily dependent on the initial learning rate

- 4 週 ト - 4 三 ト - 4 三 ト

• $\eta_t = \eta$

- convergence is not guaranteed! [Moulines and Bach (2011)]
- $\eta_t \propto t^{-lpha}$ with $lpha \in (0.5, 1)$ [Robbins and Monro (1951)]
 - heavily dependent on the initial learning rate
- $\eta_t = \eta$ for the first t_1 iterations, then it gets halved and so on. This procedure is called SGD^{1/2}. [Bottou et al. (2018)]
 - also not robust

• $\eta_t = \eta$

- convergence is not guaranteed! [Moulines and Bach (2011)]
- $\eta_t \propto t^{-lpha}$ with $lpha \in (0.5, 1)$ [Robbins and Monro (1951)]
 - · heavily dependent on the initial learning rate
- $\eta_t = \eta$ for the first t_1 iterations, then it gets halved and so on. This procedure is called SGD^{1/2}. [Bottou et al. (2018)]
 - also not robust
- Adaptive methods:
 - pflug Diagnostic [Chee, Toulis (2018)]
 - AdaGrad [Duchi, Hazan, Singer (2011)]
 - Adam [Kingma, Ba (2015)]

Behavior of Classic Methods

2

<ロ> (日) (日) (日) (日) (日)

Robustness of Our Method

2

<ロ> (日) (日) (日) (日) (日)

- Introduce the Splitting Diagnostic
- Theoretical guarantees for Splitting Diagnostic
- Introduce procedure SplitSGD

くほと くほと くほと

Splitting Diagnostic

Goal:

Detect the **phase transition**, so we can keep η constant until stationarity.

- Run two SGD threads (related to HiGrad [Su and Zhu (2018)])
- If the noisy gradients point on average in the same direction, we are still approaching the minimizer
- If not, we reached stationarity

Splitting Diagnostic

Definition:

- $\bar{g}_i^{(k)} :=$ is the average noisy gradient in window *i* and thread *k*
- $Q_i(\theta_0, \eta, l) = \langle \bar{g}_i^{(1)}, \bar{g}_i^{(2)} \rangle$ is the gradient coherence, which is positive if $\bar{g}_i^{(1)}$ and $\bar{g}_i^{(2)}$ have approximately the same direction

Output

A binary value that tells if stationarity is detected,

$$T_D = \begin{cases} \text{STATIONARY} & \text{if there are enough negative } Q_i \\ \text{NON STATIONARY} & \text{otherwise} \end{cases}$$

and the average of the last iterates in the two threads

(日) (周) (三) (三)

Theoretical Guarantees for η small

We want the diagnostic to say that stationarity has not been reached yet.

A D A D A D A

Theoretical Guarantees for η small

We want the diagnostic to say that stationarity has not been reached yet.

Theorem:

If $F(\theta)$ is *L*-smooth, and $\mathbb{E}\left[||g(\theta, Z)||^2\right] \leq G^2$, then for any fixed $t \in \mathbb{N}$ and $i \in \{1, ..., w\}$ we can set η small enough such that

 $T_D = NON STATIONARY$

with high probability.

Theoretical Guarantees for η small

We prove it by showing that

 $\mathsf{sd}(Q_i) \leq C_1(\eta, \ell) \cdot \mathbb{E}[Q_i]$

where $C_1(\eta, \ell)$ can be made arbitrarily small. When η is small, the gradient coherence is positive.

Theoretical Guarantees for t large

If $t \to \infty$, we want stationarity to be detected.

э

- 4 同 6 4 日 6 4 日 6

Theoretical Guarantees for t large

If $t \to \infty$, we want stationarity to be detected.

Theorem:

If $F(\theta)$ is μ -strongly convex and L-smooth, and $\mathbb{E}\left[||g(\theta, Z)||^2\right] \leq G^2$, then for any $\eta \leq \mu/L^2$, $\ell \in \mathbb{N}$ and $i \in \{1, ..., w\}$, as $t \to \infty$ we have that

 $T_D = STATIONARY$

with high probability.

Theoretical Guarantees for t large

We prove it by showing that

 $|\mathbb{E}[Q_i]| \leq C_2(\eta) \cdot \mathsf{sd}(Q_i)$

where $C_2(\eta) = C_2 \cdot \eta + o(\eta)$. When *t* is large, the gradient coherence is distributed around 0.

Logistic Regression

Comparison with pflug Diagnostic

$$egin{aligned} & heta^* = (1,...,1) \ & heta_0 = (\epsilon_1,...,\epsilon_d) \end{aligned}$$

where $\epsilon_i \sim N(0, 0.1)$. We run multiple SGD threads and "eyeball" the elbow of the distance with θ^* .

過 ト イヨ ト イヨト

Sordello

Comparison with pflug Diagnostic

$$egin{aligned} & heta^* = (1,...,1) \ & heta_0 = (\epsilon_1,...,\epsilon_d) \end{aligned}$$

where $\epsilon_i \sim N(0, 0.1)$. We run multiple SGD threads and "eyeball" the elbow of the distance with θ^* .

- Splitting Diagnostic declares stationarity after 47.000 iterations
- The pflug Diagnostic consistently estimates more than a million

Comparison with pflug Diagnostic

Number of iterations before stationarity, multiply by 1000.

		Eyeballing		pflug		Splitting	
	η start	close	far	close	far	close	far
Linear	0.001 0.0001	4.0 30.0	5.0 50.0	4.7 65.3	717.6 1000.0	6.1 14.6	10.3 47.1
Logistic	0.01	5.0	10.0	0.8	51.5	15.7	17.1
	0.001	30.0	100.0	3.5	452.2	20.1	57.2

(日) (周) (三) (三)

SplitSGD

æ

<ロ> (日) (日) (日) (日) (日)

SplitSGD

- Run SGD with fixed learning rate η on a single thread. The number of iterations t_1 if decided in advance.
- From θ_{t_1} split the single thread into two and start the Splitting Diagnostic.

SplitSGD

$$\begin{array}{c|c} \eta_t = \eta \\ \hline t_1 \\ 1 \\ 2 \\ \hline t_2 \\ \hline t_1 \\ \hline t_2 \\ \hline t_2 \\ \hline t_1 \\ \hline t_2 \\ \hline t_1 \\ \hline t_2 \\ \hline t_2 \\ \hline t_1 \\ \hline t_2 \\ \hline t_2 \\ \hline t_1 \\ \hline t_2 \\ \hline t_2 \\ \hline t_1 \\ \hline t_2 \\ t$$

From the output of the diagnostic, θ_D , restart a new single thread

- of length t_1 and with learning rate η if $T_D = \text{NON STATIONARY}$.
- of length $\lfloor t_1/\gamma \rfloor$ and with learning rate $\eta \cdot \gamma$ if $T_D = \text{STATIONARY}$.
- γ is the **discount factor**.

Comparison with other SGDs (Logistic Regression)

Comparison with other SGDs (SVM)

(日) (同) (三) (三)

Comparison with AdaGrad

We used a **sparse** feature matrix. In Adagrad $\eta_t = \frac{\eta}{\sqrt{G_t^2 + \epsilon}} \in \mathbb{R}^d$

(日) (周) (三) (三)

Conclusion

We developed an efficient optimization method using a diagnostic that detects when SGD with constant learning rate has reached stationarity.

· · · · · · · · ·

Conclusion

We developed an efficient optimization method using a diagnostic that detects when SGD with constant learning rate has reached stationarity.

SplitSGD:

- no more computational cost than the standard SGD
- **robust** to the choice of the initial learning rate
- robust to the choice of the starting point

Conclusion

We developed an efficient optimization method using a diagnostic that detects when SGD with constant learning rate has reached stationarity.

SplitSGD:

- no more computational cost than the standard SGD
- robust to the choice of the initial learning rate
- robust to the choice of the starting point

Future Work:

- Performance in nonconvex settings
- Incorporate into other existing methods (momentum, ...)

References

- Chee, J. and Toulis, P. (2018). Convergence diagnostics for stochastic gradient descent with constant learning rate. *Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics*, 1476-1485. PMLR.
- [2] Su, W.J., and Zhu, Y. (2018). Uncertainty Quantification for Online Learning and Stochastic Approximation via Hierarchical Incremental Gradient Descent. arXiv preprint arXiv:1802.04876

< 回 > < 三 > < 三 >

Thank you!

æ

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・