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Differential Privacy in Machine Learning

Differential privacy is a tool to guarantee the privacy of individuals while releasing
aggregate information about a dataset.
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Differential Privacy in Machine Learning

Differential privacy is a tool to guarantee the privacy of individuals while releasing
aggregate information about a dataset.

@ Datasets D and D’ are neighboring, we write D ~ D’
@ Mechanism M acting on the datasets
@ Pp is the distribution induced of M(D)

(¢, 9) Differential Privacy
A mechanism M is (¢,)-DP if and only if for any event A

Po(A) < & - Ppi(A) +6
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f-Divergence and Contraction Coefficient

f-Divergence

The f-divergence between two probability distribution x and v is

oo -2 1 (%)) [1(£)
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f-Divergence and Contraction Coefficient

f-Divergence

The f-divergence between two probability distribution x and v is

oo -2 1 (%)) [1(£)

Contraction Coefficient

The contraction coefficient of kernel K under the f-divergence

Ds(pK|[vK)

ne(K) =
( ) w,v:De(p||v)#£0 Df(/*LHV)
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f-Divergence and Contraction Coefficient

f-Divergence

The f-divergence between two probability distribution x and v is

oom -5 1 (%)) /(%)

Contraction Coefficient

The contraction coefficient of kernel K under the f-divergence

Ds(uK|lvK
WK = sy DRI
1,v:Df (]| )50 f(pllv)

o sequence of Markov kernels {K,}

@ sequence of measures {u,} generated starting from po by applying pn = pn—1Ks
Strong Data Processing Inequality: D¢ (unl|vn) < Df(uollvo) [T ne(Ke)
=1
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E,-Divergence and Differential Privacy

E,-Divergence

The E,-divergence is an f-divergence with f(t) = (t — )+

E,(ullv) = sup [W(A) — v - v(A)]
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E,-Divergence and Differential Privacy

E,-Divergence

The E,-divergence is an f-divergence with f(t) = (t — )+

E,(pllv) = sup [W(A) — v - v(A)]

Connection with (¢, §)-DP:

M is (€,0)-DP if and only if Ec<(Pp||Ppr) < &
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E,-Divergence and Differential Privacy

E,-Divergence

The E,-divergence is an f-divergence with f(t) = (t — )+

E,(pllv) = sup [W(A) — v - v(A)]

Connection with (¢, §)-DP:

M is (€,6)-DP if and only if Ec<(Ppl||Pp/) < 6

@ M is (¢,0)-DP means that Pp(A) < e - Pp/(A) + 6 for any A

® Eec(Ppl||Pp) = supa[Pp(A) — e - Pp/(A)]
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|
Projected Noisy Stochastic Gradient Descent

Consider a loss function £: W x X — R that takes as inputs a parameter in the space

K C W and an observation x € X and is "well behaved” (L-Lipschitz, p-strongly convex
and with gradient S-Lipschitz).
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|
Projected Noisy Stochastic Gradient Descent

Consider a loss function £: W x X — R that takes as inputs a parameter in the space
K C W and an observation x € X and is "well behaved” (L-Lipschitz, p-strongly convex
and with gradient S-Lipschitz).

@ SGD step with learning rate n

PNSGD

W1 = wr — vaf(Wt,XtH)
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Projected Noisy Stochastic Gradient Descent

Consider a loss function £: W x X — R that takes as inputs a parameter in the space
K C W and an observation x € X and is "well behaved” (L-Lipschitz, p-strongly convex
and with gradient S-Lipschitz).

@ SGD step with learning rate n
@ injection of i.i.d. noise sampled from a known distribution to guarantee privacy

PNSGD

Werr = We — IV ul(We, Xe1) 4021
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Projected Noisy Stochastic Gradient Descent

Consider a loss function £: W x X — R that takes as inputs a parameter in the space
K C W and an observation x € X and is "well behaved” (L-Lipschitz, p-strongly convex
and with gradient S-Lipschitz).

@ SGD step with learning rate n
@ injection of i.i.d. noise sampled from a known distribution to guarantee privacy
@ projection Mk : W — K onto the subspace K

PNSGD

wer1 =Mr(we — NV l(we, Xer1)+nZes1)
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Projected Noisy Stochastic Gradient Descent

Consider a loss function £: W x X — R that takes as inputs a parameter in the space
K C W and an observation x € X and is "well behaved” (L-Lipschitz, p-strongly convex
and with gradient S-Lipschitz).

@ SGD step with learning rate n

@ injection of i.i.d. noise sampled from a known distribution to guarantee privacy

@ projection Mk : W — K onto the subspace K

PNSGD

wer1 =Mr(we — NV l(we, Xer1)+nZes1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that wo ~ o and w ~ pr = oKy, ... Ky,
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|
Projected Noisy Stochastic Gradient Descent

Consider a loss function £: W x X — R that takes as inputs a parameter in the space
K C W and an observation x € X and is "well behaved” (L-Lipschitz, p-strongly convex
and with gradient S-Lipschitz).

@ SGD step with learning rate n

@ injection of i.i.d. noise sampled from a known distribution to guarantee privacy

@ projection Mk : W — K onto the subspace K

PNSGD

wer1 =Mr(we — NV l(we, Xer1)+nZes1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that wo ~ o and w ~ pr = oKy, ... Ky,

Let {x1,..., xn} and {x{, ..., x,} be equal except for index i where x; # x/

n

Dt (110K -+ K, [ 110Ky - Ko ) < Dr (0K Ko [l 10 Koy - Kor) T me(K) = A-B™
N——

t=i+1
<A <B
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NN
Privacy Bounds for Shuffled PNSGD with Fixed Noise

Q(t)=1-o(t) and 6,(r)=Q (@ _ %) —4Q (@ N %>
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|
Privacy Bounds for Shuffled PNSGD with Fixed Noise

Qt)=1—(t) and 6,(r)=Q (@ _ g) 0 <@ . %>

Theorem:

Let D ~ D’ be of size n. Then the shuffled PNSGD with fixed level of injected noise for
all updates is (¢, §)-DP with
A-(1-B")

0= n(1— B)

Gaussian noise N(0,02) on K C R?:

A= 0. (%) and B:Oee(MDK)
o no

Laplace noise L(0,v) on K = [a, b]:
e_ L e_ Mb=a)
A:(l—e2 V) and B:(l—e2 mv )
+ +
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NS
Shuffled PNSGD with Laplace Noise

1 1 — e~ CGrexp(e/2) 1
V(”)‘O(m> - 6‘T+O<;>
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Shuffled PNSGD with Laplace Noise
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Shuffled PNSGD with Gaussian Noise
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Online Results with Decaying Noise

@ Online setting where data are added sequentially to dataset D

@ Allow the noise level to be different for different entries, no need to re-calibrate for
all x; when n grows

0=A;- ﬁ B:

t=i+1
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|
Online Results with Decaying Noise

@ Online setting where data are added sequentially to dataset D

@ Allow the noise level to be different for different entries, no need to re-calibrate for
all x; when n grows

0=A;- f[ B:

t=i+1

Gaussian noise N(0,07) for individual x; on K C R?:

Aj = oee (%) and Bj = aee <MDIK)
gj noj

Laplace noise L(0, v;) for individual x; on K = [a, b]:

_L € _ M(b—a)
Aj:<1—e VJ) and Bj:(l—e2 2 )
+ +
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NS
Online PNSGD with Laplace Noise

1
For shuffled PNSGD: ~ v(n) = O (W)
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-
Online PNSGD with Laplace Noise

For shuffled PNSGD: v(n)=0 (

For online PNSGD, o > 1

5= (15072

e 2Lnlog(i”/ G +G)
0~ (1 — e M(b=a) ) X
+

e Cle%
| 1—-—— | d
P {~/i+1 o8 ( X + C1C2> X}

1

log (n/C1)
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Online PNSGD with Laplace Noise

For shuffled PNSGD: v(n) =

For online PNSGD, o > 1 -3.59
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PNSGD with decaying Laplace errors
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NS
Online PNSGD with Gaussian Noise

For shuffled PNSGD
—ow(-" o
oln) = 27 C?

For online PNSGD, o > 1

j2a —1/2
Uj:O(W (27rC12> >
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|
Online PNSGD with Gaussian Noise

For shuffled PNSGD

PNSGD with decaying Gaussian errors
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Online PNSGD with Gaussian Noise

PNSGD with decaying Gaussian errors

For shuffled PNSGD -14.2 18.081
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Future Directions

o Extend the theory to consider PNSGD updates on mini-batches

@ Larger simulations to investigate the practical usefulness of the results
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