
Privacy Amplification via Iteration for

Shuffled and Online PNSGD

Matteo Sordello, Zhiqi Bu, Jinshuo Dong
matteo.sordello91@gmail.com

University of Pennsylvania

ECML-PKDD

Sordello Privacy Amplification via Iteration for PNSGD 1 / 13



Differential Privacy in Machine Learning

Differential privacy is a tool to guarantee the privacy of individuals while releasing
aggregate information about a dataset.

Datasets D and D ′ are neighboring, we write D ∼ D ′

Mechanism M acting on the datasets

PD is the distribution induced of M(D)

(ε, δ) Differential Privacy

A mechanism M is (ε, δ)-DP if and only if for any event A

PD(A) ≤ eε · PD′(A) + δ

Sordello Privacy Amplification via Iteration for PNSGD 2 / 13



Differential Privacy in Machine Learning

Differential privacy is a tool to guarantee the privacy of individuals while releasing
aggregate information about a dataset.

Datasets D and D ′ are neighboring, we write D ∼ D ′

Mechanism M acting on the datasets

PD is the distribution induced of M(D)

(ε, δ) Differential Privacy

A mechanism M is (ε, δ)-DP if and only if for any event A

PD(A) ≤ eε · PD′(A) + δ

Sordello Privacy Amplification via Iteration for PNSGD 2 / 13



Differential Privacy in Machine Learning

Differential privacy is a tool to guarantee the privacy of individuals while releasing
aggregate information about a dataset.

Datasets D and D ′ are neighboring, we write D ∼ D ′

Mechanism M acting on the datasets

PD is the distribution induced of M(D)

(ε, δ) Differential Privacy

A mechanism M is (ε, δ)-DP if and only if for any event A

PD(A) ≤ eε · PD′(A) + δ

Sordello Privacy Amplification via Iteration for PNSGD 2 / 13



f -Divergence and Contraction Coefficient

f -Divergence

The f -divergence between two probability distribution µ and ν is

Df (µ‖ν) = Eν
[
f

(
dµ

dν

)]
=

∫
f

(
dµ

dν

)
dν

Contraction Coefficient

The contraction coefficient of kernel K under the f -divergence

ηf (K) = sup
µ,ν:Df (µ‖ν)6=0

Df (µK‖νK)

Df (µ‖ν)

sequence of Markov kernels {Kn}
sequence of measures {µn} generated starting from µ0 by applying µn = µn−1Kn

Strong Data Processing Inequality: Df (µn‖νn) ≤ Df (µ0‖ν0)
n∏

t=1

ηf (Kt)

Sordello Privacy Amplification via Iteration for PNSGD 3 / 13



f -Divergence and Contraction Coefficient

f -Divergence

The f -divergence between two probability distribution µ and ν is

Df (µ‖ν) = Eν
[
f

(
dµ

dν

)]
=

∫
f

(
dµ

dν

)
dν

Contraction Coefficient

The contraction coefficient of kernel K under the f -divergence

ηf (K) = sup
µ,ν:Df (µ‖ν) 6=0

Df (µK‖νK)

Df (µ‖ν)

sequence of Markov kernels {Kn}
sequence of measures {µn} generated starting from µ0 by applying µn = µn−1Kn

Strong Data Processing Inequality: Df (µn‖νn) ≤ Df (µ0‖ν0)
n∏

t=1

ηf (Kt)

Sordello Privacy Amplification via Iteration for PNSGD 3 / 13



f -Divergence and Contraction Coefficient

f -Divergence

The f -divergence between two probability distribution µ and ν is

Df (µ‖ν) = Eν
[
f

(
dµ

dν

)]
=

∫
f

(
dµ

dν

)
dν

Contraction Coefficient

The contraction coefficient of kernel K under the f -divergence

ηf (K) = sup
µ,ν:Df (µ‖ν) 6=0

Df (µK‖νK)

Df (µ‖ν)

sequence of Markov kernels {Kn}
sequence of measures {µn} generated starting from µ0 by applying µn = µn−1Kn

Strong Data Processing Inequality: Df (µn‖νn) ≤ Df (µ0‖ν0)
n∏

t=1

ηf (Kt)

Sordello Privacy Amplification via Iteration for PNSGD 3 / 13



Eγ-Divergence and Differential Privacy

Eγ-Divergence

The Eγ-divergence is an f -divergence with f (t) = (t − γ)+

Eγ(µ‖ν) = sup
A

[µ(A)− γ · ν(A)]

Connection with (ε, δ)-DP:

M is (ε, δ)-DP if and only if Eeε(PD‖PD′) ≤ δ

M is (ε, δ)-DP means that PD(A) ≤ eε · PD′(A) + δ for any A

Eeε(PD‖PD′) = supA [PD(A)− eε · PD′(A)]

Sordello Privacy Amplification via Iteration for PNSGD 4 / 13



Eγ-Divergence and Differential Privacy

Eγ-Divergence

The Eγ-divergence is an f -divergence with f (t) = (t − γ)+

Eγ(µ‖ν) = sup
A

[µ(A)− γ · ν(A)]

Connection with (ε, δ)-DP:

M is (ε, δ)-DP if and only if Eeε(PD‖PD′) ≤ δ

M is (ε, δ)-DP means that PD(A) ≤ eε · PD′(A) + δ for any A

Eeε(PD‖PD′) = supA [PD(A)− eε · PD′(A)]

Sordello Privacy Amplification via Iteration for PNSGD 4 / 13



Eγ-Divergence and Differential Privacy

Eγ-Divergence

The Eγ-divergence is an f -divergence with f (t) = (t − γ)+

Eγ(µ‖ν) = sup
A

[µ(A)− γ · ν(A)]

Connection with (ε, δ)-DP:

M is (ε, δ)-DP if and only if Eeε(PD‖PD′) ≤ δ

M is (ε, δ)-DP means that PD(A) ≤ eε · PD′(A) + δ for any A

Eeε(PD‖PD′) = supA [PD(A)− eε · PD′(A)]

Sordello Privacy Amplification via Iteration for PNSGD 4 / 13



Projected Noisy Stochastic Gradient Descent

Consider a loss function ` :W ×X → R that takes as inputs a parameter in the space
K ⊆ W and an observation x ∈ X and is ”well behaved” (L-Lipschitz, ρ-strongly convex
and with gradient β-Lipschitz).

1 SGD step with learning rate η
2 injection of i.i.d. noise sampled from a known distribution to guarantee privacy
3 projection ΠK :W → K onto the subspace K

PNSGD

wt+1 =ΠK(wt − η∇w `(wt , xt+1)+ηZt+1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt

Let {x1, ..., xn} and {x ′1, ..., x ′n} be equal except for index i where xi 6= x ′i

Df (µ0Kx1 ...Kxn‖µ0Kx′1
...Kx′n ) ≤ Df (µ0Kx1 ...Kxi ‖µ0Kx′1

...Kx′i
)︸ ︷︷ ︸

≤A

n∏
t=i+1

ηf (Kxt )︸ ︷︷ ︸
≤B

= A · Bn−i

Sordello Privacy Amplification via Iteration for PNSGD 5 / 13



Projected Noisy Stochastic Gradient Descent

Consider a loss function ` :W ×X → R that takes as inputs a parameter in the space
K ⊆ W and an observation x ∈ X and is ”well behaved” (L-Lipschitz, ρ-strongly convex
and with gradient β-Lipschitz).

1 SGD step with learning rate η

2 injection of i.i.d. noise sampled from a known distribution to guarantee privacy
3 projection ΠK :W → K onto the subspace K

PNSGD

wt+1 =

ΠK(

wt − η∇w `(wt , xt+1)

+ηZt+1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt

Let {x1, ..., xn} and {x ′1, ..., x ′n} be equal except for index i where xi 6= x ′i

Df (µ0Kx1 ...Kxn‖µ0Kx′1
...Kx′n ) ≤ Df (µ0Kx1 ...Kxi ‖µ0Kx′1

...Kx′i
)︸ ︷︷ ︸

≤A

n∏
t=i+1

ηf (Kxt )︸ ︷︷ ︸
≤B

= A · Bn−i

Sordello Privacy Amplification via Iteration for PNSGD 5 / 13



Projected Noisy Stochastic Gradient Descent

Consider a loss function ` :W ×X → R that takes as inputs a parameter in the space
K ⊆ W and an observation x ∈ X and is ”well behaved” (L-Lipschitz, ρ-strongly convex
and with gradient β-Lipschitz).

1 SGD step with learning rate η
2 injection of i.i.d. noise sampled from a known distribution to guarantee privacy

3 projection ΠK :W → K onto the subspace K

PNSGD

wt+1 =

ΠK(

wt − η∇w `(wt , xt+1)+ηZt+1

)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt

Let {x1, ..., xn} and {x ′1, ..., x ′n} be equal except for index i where xi 6= x ′i

Df (µ0Kx1 ...Kxn‖µ0Kx′1
...Kx′n ) ≤ Df (µ0Kx1 ...Kxi ‖µ0Kx′1

...Kx′i
)︸ ︷︷ ︸

≤A

n∏
t=i+1

ηf (Kxt )︸ ︷︷ ︸
≤B

= A · Bn−i

Sordello Privacy Amplification via Iteration for PNSGD 5 / 13



Projected Noisy Stochastic Gradient Descent

Consider a loss function ` :W ×X → R that takes as inputs a parameter in the space
K ⊆ W and an observation x ∈ X and is ”well behaved” (L-Lipschitz, ρ-strongly convex
and with gradient β-Lipschitz).

1 SGD step with learning rate η
2 injection of i.i.d. noise sampled from a known distribution to guarantee privacy
3 projection ΠK :W → K onto the subspace K

PNSGD

wt+1 =ΠK(wt − η∇w `(wt , xt+1)+ηZt+1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt

Let {x1, ..., xn} and {x ′1, ..., x ′n} be equal except for index i where xi 6= x ′i

Df (µ0Kx1 ...Kxn‖µ0Kx′1
...Kx′n ) ≤ Df (µ0Kx1 ...Kxi ‖µ0Kx′1

...Kx′i
)︸ ︷︷ ︸

≤A

n∏
t=i+1

ηf (Kxt )︸ ︷︷ ︸
≤B

= A · Bn−i

Sordello Privacy Amplification via Iteration for PNSGD 5 / 13



Projected Noisy Stochastic Gradient Descent

Consider a loss function ` :W ×X → R that takes as inputs a parameter in the space
K ⊆ W and an observation x ∈ X and is ”well behaved” (L-Lipschitz, ρ-strongly convex
and with gradient β-Lipschitz).

1 SGD step with learning rate η
2 injection of i.i.d. noise sampled from a known distribution to guarantee privacy
3 projection ΠK :W → K onto the subspace K

PNSGD

wt+1 =ΠK(wt − η∇w `(wt , xt+1)+ηZt+1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt

Let {x1, ..., xn} and {x ′1, ..., x ′n} be equal except for index i where xi 6= x ′i

Df (µ0Kx1 ...Kxn‖µ0Kx′1
...Kx′n ) ≤ Df (µ0Kx1 ...Kxi ‖µ0Kx′1

...Kx′i
)︸ ︷︷ ︸

≤A

n∏
t=i+1

ηf (Kxt )︸ ︷︷ ︸
≤B

= A · Bn−i

Sordello Privacy Amplification via Iteration for PNSGD 5 / 13



Projected Noisy Stochastic Gradient Descent

Consider a loss function ` :W ×X → R that takes as inputs a parameter in the space
K ⊆ W and an observation x ∈ X and is ”well behaved” (L-Lipschitz, ρ-strongly convex
and with gradient β-Lipschitz).

1 SGD step with learning rate η
2 injection of i.i.d. noise sampled from a known distribution to guarantee privacy
3 projection ΠK :W → K onto the subspace K

PNSGD

wt+1 =ΠK(wt − η∇w `(wt , xt+1)+ηZt+1)

Each PNSGD update can be written as a composition of Markov kernels by assuming
that w0 ∼ µ0 and wt ∼ µt = µ0Kx1 ...Kxt

Let {x1, ..., xn} and {x ′1, ..., x ′n} be equal except for index i where xi 6= x ′i

Df (µ0Kx1 ...Kxn‖µ0Kx′1
...Kx′n ) ≤ Df (µ0Kx1 ...Kxi ‖µ0Kx′1

...Kx′i
)︸ ︷︷ ︸

≤A

n∏
t=i+1

ηf (Kxt )︸ ︷︷ ︸
≤B

= A · Bn−i

Sordello Privacy Amplification via Iteration for PNSGD 5 / 13



Privacy Bounds for Shuffled PNSGD with Fixed Noise

Q(t) = 1− Φ(t) and θγ(r) = Q

(
log(γ)

r
− r

2

)
− γQ

(
log(γ)

r
+

r

2

)

Theorem:

Let D ∼ D ′ be of size n. Then the shuffled PNSGD with fixed level of injected noise for
all updates is (ε, δ)-DP with

δ =
A · (1− Bn)

n(1− B)

Gaussian noise N(0, σ2) on K ⊂ Rd :

A = θeε

(
2L

σ

)
and B = θeε

(
MDK

ησ

)
Laplace noise L(0, v) on K = [a, b]:

A =
(

1− e
ε
2
− L

v

)
+

and B =

(
1− e

ε
2
−M(b−a)

2ηv

)
+

Sordello Privacy Amplification via Iteration for PNSGD 6 / 13



Privacy Bounds for Shuffled PNSGD with Fixed Noise

Q(t) = 1− Φ(t) and θγ(r) = Q

(
log(γ)

r
− r

2

)
− γQ

(
log(γ)

r
+

r

2

)

Theorem:

Let D ∼ D ′ be of size n. Then the shuffled PNSGD with fixed level of injected noise for
all updates is (ε, δ)-DP with

δ =
A · (1− Bn)

n(1− B)

Gaussian noise N(0, σ2) on K ⊂ Rd :

A = θeε

(
2L

σ

)
and B = θeε

(
MDK

ησ

)
Laplace noise L(0, v) on K = [a, b]:

A =
(

1− e
ε
2
− L

v

)
+

and B =

(
1− e

ε
2
−M(b−a)

2ηv

)
+

Sordello Privacy Amplification via Iteration for PNSGD 6 / 13



Shuffled PNSGD with Laplace Noise

v(n) = O

(
1

log (n/C1)

)
⇒ δ =

1− e−C1 exp(ε/2)

C1e
ε
2

+ O

(
1

n

)

−5.22

−4.45

−3.68

−2.91

−2.15

0.54

2.21

3.88

5.54

7.21

2 3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

ν

δ 
ν 
δ* = 10^−5.22

Shuffled PNSGD with fixed Laplace errors

−8

−6

−4

−2

2 3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ

−
δ∗ )

Sordello Privacy Amplification via Iteration for PNSGD 7 / 13



Shuffled PNSGD with Laplace Noise

v(n) = O

(
1

log (n/C1)

)
⇒ δ =

1− e−C1 exp(ε/2)

C1e
ε
2

+ O

(
1

n

)

−5.22

−4.45

−3.68

−2.91

−2.15

0.54

2.21

3.88

5.54

7.21

2 3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

ν

δ 
ν 
δ* = 10^−5.22

Shuffled PNSGD with fixed Laplace errors

−8

−6

−4

−2

2 3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ

−
δ∗ )

Sordello Privacy Amplification via Iteration for PNSGD 7 / 13



Shuffled PNSGD with Gaussian Noise

−5.52

−4.39

−3.27

−2.15

−1.02

1.17

1.56

1.94

2.33

2.72

2 4 6 8 10
log10(n)

lo
g 1

0(
δ)

σ

δ
σ
δ* = 10^−5.52

Shuffled PNSGD with fixed Gaussian errors

−5.78

−4.72

−3.66

−2.60

−1.53

4.80

7.00

9.19

11.39

13.59

2 4 6 8 10 12
log10(n)

lo
g 1

0(
δ)

σ
δ
σ
δ* = 10^−5.52

Shuffled PNSGD with fixed Gaussian errors

σ(n) = O

(
W

(
n2

2πC 2
1

)−1/2
)

δ =
1− e−2C1e

ε
2

2C1e
ε
2

+ O

(
1

log(n)

)

0

4

8

12

2 4 6 8 10 12 14
log10(n)

1/
(δ

−
δ∗ )

Sordello Privacy Amplification via Iteration for PNSGD 8 / 13



Online Results with Decaying Noise

Online setting where data are added sequentially to dataset D

Allow the noise level to be different for different entries, no need to re-calibrate for
all xi when n grows

δ = Ai ·
n∏

t=i+1

Bt

Gaussian noise N(0, σ2
j ) for individual xj on K ⊂ Rd :

Aj = θeε

(
2L

σj

)
and Bj = θeε

(
MDK

ησj

)
Laplace noise L(0, vj) for individual xj on K = [a, b]:

Aj =

(
1− e

ε
2
− L

vj

)
+

and Bj =

(
1− e

ε
2
−M(b−a)

2ηvj

)
+

Sordello Privacy Amplification via Iteration for PNSGD 9 / 13



Online Results with Decaying Noise

Online setting where data are added sequentially to dataset D

Allow the noise level to be different for different entries, no need to re-calibrate for
all xi when n grows

δ = Ai ·
n∏

t=i+1

Bt

Gaussian noise N(0, σ2
j ) for individual xj on K ⊂ Rd :

Aj = θeε

(
2L

σj

)
and Bj = θeε

(
MDK

ησj

)
Laplace noise L(0, vj) for individual xj on K = [a, b]:

Aj =

(
1− e

ε
2
− L

vj

)
+

and Bj =

(
1− e

ε
2
−M(b−a)

2ηvj

)
+

Sordello Privacy Amplification via Iteration for PNSGD 9 / 13



Online PNSGD with Laplace Noise

For shuffled PNSGD: v(n) = O

(
1

log (n/C1)

)

For online PNSGD, α > 1

vj = O

(
1

log (jα/C1)

)

δ ≈
(

1− e
ε
2
− 2Lη log(iα/C1+C2)

M(b−a)

)
+
×

exp

{∫ ∞
i+1

log

(
1− C1e

ε
2

xα + C1C2

)
dx

}

−7.81

−6.76

−5.70

−4.64

−3.59

1.89

3.49

5.09

6.69

8.29

3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

ν

δ 
ν 
δ* = 10^−7.81

PNSGD with decaying Laplace errors

Sordello Privacy Amplification via Iteration for PNSGD 10 / 13



Online PNSGD with Laplace Noise

For shuffled PNSGD: v(n) = O

(
1

log (n/C1)

)

For online PNSGD, α > 1

vj = O

(
1

log (jα/C1)

)

δ ≈
(

1− e
ε
2
− 2Lη log(iα/C1+C2)

M(b−a)

)
+
×

exp

{∫ ∞
i+1

log

(
1− C1e

ε
2

xα + C1C2

)
dx

}

−7.81

−6.76

−5.70

−4.64

−3.59

1.89

3.49

5.09

6.69

8.29

3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

ν

δ 
ν 
δ* = 10^−7.81

PNSGD with decaying Laplace errors

Sordello Privacy Amplification via Iteration for PNSGD 10 / 13



Online PNSGD with Laplace Noise

For shuffled PNSGD: v(n) = O

(
1

log (n/C1)

)

For online PNSGD, α > 1

vj = O

(
1

log (jα/C1)

)

δ ≈
(

1− e
ε
2
− 2Lη log(iα/C1+C2)

M(b−a)

)
+
×

exp

{∫ ∞
i+1

log

(
1− C1e

ε
2

xα + C1C2

)
dx

}
−7.81

−6.76

−5.70

−4.64

−3.59

1.89

3.49

5.09

6.69

8.29

3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

ν

δ 
ν 
δ* = 10^−7.81

PNSGD with decaying Laplace errors

Sordello Privacy Amplification via Iteration for PNSGD 10 / 13



Online PNSGD with Gaussian Noise

For shuffled PNSGD

σ(n) = O

(
W

(
n2

2πC 2
1

)−1/2
)

For online PNSGD, α > 1

σj = O

(
W

(
j2α

2πC 2
1

)−1/2
)

−22.6

−20.5

−18.4

−16.3

−14.2

7.273

9.975

12.677

15.379

18.081

3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

σ

δ 
σ 
δ* = 10^−22.57

PNSGD with decaying Gaussian errors

δ ≈ θeε
(2L

σi

)
· exp

{∫ ∞
i+1

log

(
θeε

(
2

√
W

(
x2α

2πC 2
1

+ C2

)))
dx

}

Sordello Privacy Amplification via Iteration for PNSGD 11 / 13



Online PNSGD with Gaussian Noise

For shuffled PNSGD

σ(n) = O

(
W

(
n2

2πC 2
1

)−1/2
)

For online PNSGD, α > 1

σj = O

(
W

(
j2α

2πC 2
1

)−1/2
)

−22.6

−20.5

−18.4

−16.3

−14.2

7.273

9.975

12.677

15.379

18.081

3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

σ

δ 
σ 
δ* = 10^−22.57

PNSGD with decaying Gaussian errors

δ ≈ θeε
(2L

σi

)
· exp

{∫ ∞
i+1

log

(
θeε

(
2

√
W

(
x2α

2πC 2
1

+ C2

)))
dx

}

Sordello Privacy Amplification via Iteration for PNSGD 11 / 13



Online PNSGD with Gaussian Noise

For shuffled PNSGD

σ(n) = O

(
W

(
n2

2πC 2
1

)−1/2
)

For online PNSGD, α > 1

σj = O

(
W

(
j2α

2πC 2
1

)−1/2
)

−22.6

−20.5

−18.4

−16.3

−14.2

7.273

9.975

12.677

15.379

18.081

3 4 5 6 7 8 9
log10(n)

lo
g 1

0(
δ)

σ

δ 
σ 
δ* = 10^−22.57

PNSGD with decaying Gaussian errors

δ ≈ θeε
(2L

σi

)
· exp

{∫ ∞
i+1

log

(
θeε

(
2

√
W

(
x2α

2πC 2
1

+ C2

)))
dx

}

Sordello Privacy Amplification via Iteration for PNSGD 11 / 13



Future Directions

Extend the theory to consider PNSGD updates on mini-batches

Larger simulations to investigate the practical usefulness of the results

Sordello Privacy Amplification via Iteration for PNSGD 12 / 13



Thank You!

Sordello Privacy Amplification via Iteration for PNSGD 13 / 13


